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INTRODUCTION 

Maintaining an appropriate seasonality is a basic ecological requisite 
for all organisms. Critical life-cycle events must be keyed to the appropriate 
seasonal cycles, whether it be the wet-season/dry-season cycle of the tropics 
or the summer/winter cycle of temperate zones. The more pronounced the 
seasonal climatic signal, the stronger the requirement for an appropriate 
timing maintained through phenology. Although the importance of adaptive 
seasonal timing is no less for wann blooded than for poikilothenns (e.g. 
appropriately timed reproduction, hibernation), the primary application of 
phenology models has been for plants and cold-blooded animals. 

The phenological habitat can conveniently be thought of as a 
hyperspace with temperature, moisture, nutrition, and photoperiod 
comprising the defining axes. The potential effect of moisture on phenology 
is expressed as a mortality differential, especially at extremes. Photoperiod is 
a consistent seasonal variable in the temperate zone that serves as an 
important environmental cue for initiation of critical events such as diapause 
(a physiological hibernation or aestivation state in insects). Diapause is a 
basic physiological process that typically serves to synchronize and reset the 
seasonal cycle of phenological events in face of desynchronizing variability 
in seasonal temperatures. Nutrition can affect phenology in the same way as 
moisture through mortality, or by altering developmental rates. It can also 
serve as an environmental cue for initiation of diapause. 

Temperature is the strongest determinant of poikilothenn phenology, 
and is also the best understood. Thus, the focus of phenology modeling efforts 
has been to relate temperature to resulting phenological events. There is a 
large body of scientific literature relating the phenological responses of 
poikilothenns to temperature. Much of this knowledge pertains to insects or 
their close relatives. Our focus will, therefore, be on modeling seasonal life 



cycles of insects. The underlying physiological mechanisms of response to 
temperature are similar enough that the methods we describe are applicable to 
all poikilotherms. 

TEMPERATURE-DEPENDENT MODELS 

Relating temperature to the development of insects, requires 
differentiating between age and stage. Although both are related to time, age 
is strictly chronological in nature, while stage is a developmental concept 
typically defined by distinct morphological characteristics often requiring a 
molt for transition from one stage to the next. Another time-related concept, 
developmental rate, is the temporal progression through an instar or stage 
and is dependent on temperature in a predictable fashion. Assuming that it is 
a constant function within a stage, the developmental rate, r(I), at a constant 
temperature, T, is the inverse (1/t) of the time required to complete that life 
stage. For variable temperatures, T(t), where t is time, we define a 
developmental index or physiological age, a, as, 

d I 

dta1(t)=r[T(t)]; a1(t t 1_1)=0; a1 (t) Jr;[T(t)]dt; a1(t=t1) 1 [I] 
'H 

Life stage j begins at 11_~, which is the time of completion of the previous life 
stage (11_1 as indicated by the initial condition of the differential equation 
above). Numerically, developmental increments, L1a1 = r[T(t)].dt, during short 
time steps Lit are summed over time until a1 = 1, which indicates completion 
of life stage j and defines t1, the time at the end of the life stage j. 

These relationships underlie almost all models of insect phenology 
(see Logan & Powell 2001 ). Once the mathematical relationship between 
temperature, time, and physiological age is defined, there remains the issue 
of finding an appropriate functional relationship between temperature and the 
developmental rate, r(I). 

Developmental Rate Functions 

The earliest functional form used to describe the relationship between 
temperature and rate of development was the linear or day-degree model, a 
concept that dates to the 1700s (Wang 1960), and has been extensively used 
to model both animal and plant phenology. Parameters in the day-degree 
model can be estimated from either field or laboratory data. Laboratory data 
typically consist of experimentally measured developmental rates over a 
range of fixed temperatures. Field estimates are obtained by assuming a 

2 



reasonable threshold temperature 
and then summing (integrating) 
temperature in excess of the 
threshold over time (often in days) 
until "heat units" accumulate to a 
specific total. Day-degree models 
often work well if the temperatures 
of ecological interest do not fall 
outside of the linear region of the 
organism's thermal response (Fig. 
I a). Their advantage is simplicity in 
estimating parameters and making 
phenological predictions. Their 
disadvantage is that they only 
constitute a more or less adequate 
approximation (Wang 1960). 

The observation that 
developmental rates are nonlinear 
was made over 60 years ago, at least 
(Janisch 1932). It was not, however, 
until the mid 1970s that the use of 
nonlinear rate functions became 
widely practiced, mostly in response 
to the widespread availability of 
digital computers that provided 
methods for parameter estimation 
and convenient numerical solution 
of equation [I]. Stinner et al. 1975, 
Logan et al. 1976, and Sharpe & 
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Figure I. (A) Typical shape of poikilotherm 
thermal response (development rate, in 
days- 1

). (B) Typical distribution of 
indivudual development rates relative to the 
median at a given temperature. 

DeMichele 1977 described nonlinear functions for insect temperature 
dependent developmental rates that have been widely applied since their 
introduction. This large body of literature supports the general shape of the 
developmental rate function as an exponential phase at low temperatures 
increasing to an optimum, and then a precipitous decline from the optimum 
temperature to the lethal thermal maximum (Fig. I a). Parameter estimation 
for nonlinear developmental rate models is more complex than for linear 
based day-degree models. Procedures for estimating parameters of non-linear 
development rate functions have been automated for a reasonable suite of 
equations (Wagner et at. 1984, Logan 1988). A nonlinear rate model is 
required whenever simulations must cover temperatures over the full range of 
physiological activity. Life cycle phenomena that involve temperature 
extremes (diapause for example) also require nonlinear representation. The 
widely reported acceleration of development under the variable temperature 
regimes that occur in nature is the natural consequence of non-linearity (e.g., 
Tanigoshi and Logan 1979, Ruel & Ayres 1999). Given the availability of 
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digital computers for both parameter estimation and simulation, there is little 
reason not to use nonlinear rate functions. 

Modeling the Life Cycle 

Once appropriate functional forms of r(T) for each life stage have 
been established, phenology prediction becomes a question of solving 
equation [I] for the value of ti for each life stagej (for a graphical description 
of modeling phenology with equation[ I], see Logan & Powell 200 I). Day
degree models are easily evaluated. For models with nonlinear rate curves, 
the easiest approach is to use numerical integration for direct solution of 
equation [I]. Procedures are available for automated construction and 
application of nonlinear rate based phenology models as well (e.g. Logan 
1988). 

Prediction of phenology and particularly the entire life cycle is best 
represented in mathematical terms as a circle map, relating the occurrence of 
critical phenological milestones in one generation to their occurrence in the 
next. A mathematical function describing this circle map can then be used for 
analyzing the stability characteristics of seasonality (Powell et al. 2000, 
Logan & Powell 2001; Regniere & Nealis 2002). Analysis of this function, 
the G-function in Logan & Powell (200 1 ), has produced several interesting 
results. If conditions are sufficient for existence of an attracting date, then 
subsequent iterations on the annual cycle will be attracted to this date, even 
without a diapause or other physiological bio-fix mechanism. Not only will 
subsequent phenological cycles be attracted to this date, but also they will do 
so with at least exponential rapidity. This is an indication of the capability of 
insects to adapt to changing climatic conditions. 

Including Developmental Variability 

Ecological and biological phenomena often depend as much on 
variation in the population (Fig. I b) as on the average response. It is, therefore, 
often useful to include variability in developmental rates in phenology 
models. A common way of doing this is through time varying distributed 
delays, a technique borrowed from engineering (Forrester 1961; Manetsch 
1976; Vansickle 1977). An advantage of distributed delays is availability of 
computational algorithms for implementation due to their wide application in 
engineering and other areas of applied mathematics. The major disadvantage 
is lack of flexibility in representing the distribution of developmental times. 

Cohort models have often been used to include variability in 
developmental rates (Curry et al. 1978). This modeling approach uses 
computed physiological age as the independent variable for cumulative 

4 



probability density function of stage completion. The approach assumes that 
the normalized distribution of developmental rates is invariant with 
temperature. Once this assumption is made, simulation is a simple matter of 
computing physiological age of all cohorts (a cohort is typically defined as the 
individuals that entered a life stage during one time step of the model) that 
comprise a life stage. Development and implementation of these types of 
models has been automated (Logan 1988). The advantage of cohort 
approaches to modeling phenology is flexibility in choice of distribution 
models. The primary disadvantage is the "same shape" assumption, which is 
questionable at temperature extremes. 

With the relentless advance in computing power, it is becoming more 
practical to simulate population processes through sub-populations (Regniere 
1984) or individual based models. In the latter approach, a sample population 
is drawn from an observed or assumed distribution of developmental rates 
(Fig. 1 b). Simulation is performed by solving equation [1] for each individual 
in the population. The advantage of individual based models is complete 
flexibility in selection of both developmental rate functions and probability 
density distribution. The major disadvantage is computational overhead. 
Depending on the type of application, this method may be too 
computationally intensive. However, object-oriented programming techniques 
have greatly enhanced the efficiency and usefulness of individual-based 
phenology modeling (e.g., Cooke & Regniere 1996). 

MODELING LANDSCAPE INFLUENCES 

One of the areas of central interest in animal ecology is the influence 
of landscapes on the outcome of ecological processes as environmental 
conditions, plant communities, and movement influence them (Haila 2002; 
McGarigal & Cushman 2002). The ability to model these influences at the 
landscape level is a key to improving our predictive understanding of these 
outcomes so as to improve area-wide management of pests, resources and 
ecosystems (Boutin & Hebert 2002; Ryszkowski 2002). In the ecology of 
poikilotherms, landscapes play a key role in determining patterns of 
abundance through their influence on local climate (Chen et al. 1999). A 
system called BioSIM10 was developed by Regniere et al. (1996) to perform 
most ofthe functions described below. 
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Main Influences of Landscape on Climate 

Whiteman (2000) lists four factors that determine local climate over a 
given landscape: latitude, altitude above sea level, continentality (distance 
from the sea) and exposure to regional circulation (winds and ocean currents). 
Other factors that can also influence local climate are cold-air drainage and 
terrain shading, both particularly important in steep landscapes (Bolstad et at. 
1998). 

Gas physics, moisture content and solar radiation explain much of the 
effects of latitude and elevation on air temperature over a landscape. Usually, 
these influences are modeled with thermal gradients. A dry (unsaturated) 
parcel of air cools by 0.98°C 2.5 ,.,a=---------,-:---c--. 
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the air, its general temperature, air 
circulation patterns and the proximity 
of large water bodies. For example, 
m1mmum (nighttime) and maximum 
(daytime) air temperature elevation 
gradients on the pacific coast of 
British Columbia are very different 
from each other. Minimum 
temperature gradients average less 
than --0.5°C per 100 m. Maximum 
temperature gradients are actually 
inverted (positive) in summer months 
as a result of cold-water maritime 
influence (Fig. 2a). Latitudinal 
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Figure 2. Monthly thennal gradients 
from 1961 to 1990 averages for 
Vancouver Island and the Pacific coast of 
British Columbia (Canada). (a) elevation, 
(b) latitudinal and (c) longitudinal 
gradients. 

gradients in the area are strongly patterned seasonally, with temperatures 
cooling down northward in winter, and actually warming northward in 
summer (Fig. 2b), once again due to the presence of cold waters in the 
southern part of the area. Longitudinal gradients are also strongly patterned 
over the year (Fig. 2c ). 

Several methods have been devised to interpolate climatic variables 
from a number of punctual data sources over a surrounding landscape. Two 
are of particular interest because of their relative simplicity and because of the 
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general availability of their algorithms: GIDS (for Gradients with Inverse 
Distance Squared weighting; Nalder & Wein 1998) and ANUSPLIN (thin
plate smoothing splines; Hutchinson 1991 ). While their performance is very 
similar (Price et al. 2000), GIDS is most attractive because of its simplicity. It 
uses multiple linear regression fitted to data from a number (we have used 20) 
of nearby weather stations: 

[2] 

where Y is a climate value (e.g., minimum air temperature), E is elevation, N 
is latitude and W is longitude of the region's weather stations; a is an intercept 
constant, and mJ:. mN and mw are regional thermal gradients for elevation, 
latitude and longitude. These are applied to differences in latitude (~, 
longitude (,1W) and elevation (,1E) between the unsampled locations and a 
number (we have used 4) of the nearest weather stations. 

Figure 3. Digital elevation model of British Columbia and Alberta (Canada). Climate 
information for unsampled locations (•) can be obtained simply by the GIDS method 
(Nalder and Wein 1998) where data from several nearby weather stations ( o) are used to 
estimate regional thermal gradients by multiple linear regression. These gradients are then 
applied to differences in latitude, longitude and elevation between station data and 
unsampled location (an inverse distance-squared weighted average). The rectangular area 
contains the weather stations used to estimate thermal gradients in Fig. 2. 
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The inverse of the squared distances ( t/cf) between these n nearest 
stations and unsampled locations are used as weights in the estimation of the 
climate datum (~,): 

) 2 ( Y; + mr:M; + mN!J.Ni + mwflw;) 
1 

~=~-----------n--------------- [3] 

Ij2 
i=l 1 

This process (Fig. 3) can be applied equally well to monthly climate statistics 
(normals) or to daily records to obtain air temperature and precipitation 
information for any number of unsampled points across a landscape. 
Difficulties in application of this methodology sometimes arise when weather 
stations are exceedingly sparse or do not cover the range of elevations found 
in the landscape (multiple regression models are notoriously poor at 
extrapolation). For that reason, our implementation of the GIDS algorithm 
doubles, then triples, the number of stations used to estimate gradients 
whenever the elevation of the unsampled location is outside of the range 
± I 0% found among the set of nearby stations. 

Daily Weather Generators 

Daily weather generators play an important role in the investigation of 
climatic influences on animal ecology, because of the cumulative nature of 
daily or even hourly conditions. This level of detail is especially important in 
understanding the ecology of fast-developing cold-blooded animals, such as 
insects. As discussed in earlier sections of this chapter, thermal responses are 
strongly non-linear even when described by degree-day approximations. 
Thus, average outcomes cannot be obtained from ·average inputs. Thirty days 
of monthly average temperature does not have the same effect as 30 days of 
variable temperature with the same average. This has been called the 
Kaufmann effect (Womer 1992). 

When general questions concerning past climate are asked, answers 
can often be obtained by providing models with actual past weather records. 
However, such an approach has several limitations. First, past weather records 
usually cover a limited period at any given location (especially in North 
America). Second, it is never clear just how "general" a conclusion actually is 
about a given ecological process because of the limited amount of historical 
data available, especially in view of the extreme variability of weather 
conditions. 

Daily weather generation provides a general approach that can be 
applied equally well to past, present and future (climate-changed) conditions. 
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Several daily weather generators have been developed (Richardson 1981; 
Richardson & Wright 1984; Racsko et al. 1991; Hutchinson 1995; Wilks 
1999), but many require considerable amounts of input information and often 
must be re-parameterized for application in specific geographical areas. 
Regniere & Bolstad ( 1994) developed a generally-applicable algorithm 
(TempGen) for simulation of daily minimum and maximum air temperature 
using monthly normals (long-term average and extreme minimum and 
maximum temperatures). This generator is being expanded to generate 
realistic daily rainfall and solar radiation as well, and to mimic natural 
variation in mean monthly temperature and precipitation to simulate extreme 
events such as drought, untimely frost, heat waves, etc. It is also being 
validated for application in North America and Europe (unpublished). 

Because TempGen uses monthly averages as input, it is quite well 
suited to accept the climate-change scenarios generated by Global Circulation 
Models (two examples that have become widely used are the CGCM I model 
developed by the Canadian Centre for Climate Modeling and Analysis, and 
another by the Hadley Center for Climate Prediction and Research). Output 
from TempGen, based on climate-changed normals, can therefore be used 
readily to simulate the impact of global warming on ecological processes 
modeled from daily climate inputs. 

Spatial Interpolation Methodology 

Running simulation models of animal development that use daily 
weather inputs can be demanding even for relatively fast computers. This 
means that it may be prohibitively time consuming to produce model output 
for each unit (pixel, or raster) of a landscape (output map), except with the 
simplest of degree-day models (e.g. Russo et al. 1993 ). A solution is to run 
models for a relatively small number (a few hundred) of randomly located 
points across a landscape, and to use a spatial interpolation method to 
estimate model output at other locations on the landscape. This approach was 
first proposed by Schaub et al. (1995), who used of a linear regression 
between elevation and phenological target event (which they called a t
function) to transform a digital terrain model of the landscape algebraically 
into a phenology map. Regniere (1996) expanded this t-function concept 
from a simple regression with elevation to a spatial regression using latitude, 
longitude, elevation, slope and aspect, their squares and interactions as 
predictors. 

Regniere & Sharov ( 1999) used universal kriging with elevation as an 
external drift variable as an interpolation method (see Isaaks & Srivastava 
1989 for methodological details). Although general rules are difficult to 
provide, it has been our experience that spatial regression does best over 
smaller and steep landscapes, where elevation, slope and aspect are the main 
determinant of climatic variation; over larger areas, or where topography is 
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less pronounced, kriging often does somewhat better (Gignac 2000). Other 
interpolation techniques exist, for example the GIDS method described earlier 
(which is a local-regression technique) or inverse-distance weighted 
averaging. 

The choice of the most 
appropriate interpolation 
method can be made on the 
basis of cross-validation. This 
procedure consists of 
successively removing and 
replacing the known model 
output values at simulation 
points, estimating them by the 
chosen interpolation method 
and comparing the two sets 
(model output and the 
interpolated values). Simple 
coefficients of determination 
can be calculated to provide an 
objective comparison criterion 
between the interpolation 
methods tested (Fig. 4). In this 
example from spruce budworm 
(see below) the best 
interpolation method is spatial 
regression (R2 0.812). 
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Figure 4. Cross-validation of defoliation by spruce 
budworm as predicted by Cooke's model and 
estimated by four spatial interpolation methods. (A) 
universal kriging; (B) GIDS; (C) spatial regression; 
and (D) inverse-distance squared weighted average. 
Lines are the equality diagonal. 

EXAMPLES FROM ENTOMOLOGY 

The Spruce Budworm 

The spruce budworm, Choristoneurafumiferana (Clem.) is a tortricid 
moth whose larvae defoliate conifer trees (firs and spruces of the Abies and 
Picea genuses) of northeastern North America on a somewhat regular cycle of 
30-40 year (Royama 1984). It is an insect with obligate larval winter 
diapause, which means that by winter's end the entire population is 
synchronized in the early stages of post-diapause development; spring 
emergence of larvae occurs within a week, two at the most, as soon as 
sufficient development-inducing warmth has occurred. Cooke & Regniere 
(1996) developed an object-oriented, individual-based model to simulate 
interactions between spruce budworm, host trees, and the bacterium Bacillus 
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thuringiensis (B.t.) used as a bio-pesticide. The resulting so-called Cooke's 
model has been extensively validated (Regniere & Cooke 1998). 

Cooke's model can be used as a landscape-level pest management 
tool to assist in optimizing the delivery of pest management operations such 
as sampling, pheromone trap deployment, and pesticide applications. The 
efficacy of aerial sprays of B.t. is non-linearly dependent on the stage of 
development of the target insect. Obviously, a pesticide application made 
prior to emergence of larvae, before the onset of feeding, will not be 
efficacious. An application made too late, after much of the feeding damage 
has been done, may kill insects but cannot protect foliage that has already 
been consumed. Thus, there is an optimal timing of applications that is based 
on topography, climate, insect thermal responses, the feeding ecology of the 
target stages and their specific sensitivity to the pesticide. Over complex 
terrain, spruce budworm development can cover a wide range (Plate XI). The 
non-linear nature of the influence of timing on B.t. efficacy is apparent from 
the output of Cooke's model (Plate XI): applications that are made too early 
(when the insect is still overwintering and has just started feeding) are the 
least efficacious as predicted in the mountains to the north and to the 
southeast of Quebec City. The most efficacious treatments occur when the 
insect is in instars 3 and 4. Treatments applied too late, past the 41

h instar, are 
less efficacious as seen in the low-elevation area to the south and west of 
Trois-Rivieres. This makes adequate timing of control operations using B.t. 
against spruce budworm quite critical to their success in protecting conifer 
foliage. 

The Gypsy Moth 

The gypsy moth, Lymantria dispar (L.) is a lymantriid that was 
accidentally introduced in eastern North America in 1869, and has spread 
gradually to the north, west and south since (Liebhold 1992). It is a periodic 
pest of deciduous trees, especially oaks (Quercus), maples (Acer), birches 
(Betula) and poplars (Populus) (Montgommery 1990). Hypotheses about the 
determinants of its rate of spread and eventual range on the continent, 
especially to the north, have focused on egg mortality due to low winter 
temperatures, or on forest susceptibility (Sharov et al. 1999). Limitations that 
the insect will encounter in establishing to the west and south of its current 
distribution are less well understood (e.g., Allen et al. 1993). 

A detailed model of gypsy moth phenology was assembled by 
Regniere & Sharov ( 1998) from components found in the literature for the 
various life stages. The egg hatch component of this model was replaced by 
the detailed model of gypsy moth egg diapause built by Gray et al. (200 I). 
The resulting model can simulate the entire life cycle of the insect through 
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successive generations in any climate. It was first used in the context of 
timing of an eradication program in British Columbia, Canada, in 2000 
(Nealis et al. 2001 ). 

Regniere and Nealis {in press) used the model to determine the areas 
of southern British Columbia that were most likely to support establishment 
of this exotic insect, on the basis of local climate. This analysis was based on 
whether or not the model predicted a biologically feasible life cycle for the 
insect in a given location under normal climatic conditions. If peak 
oviposition was predicted to occur no later than the end of October (a time 
when temperatures are too cold for eggs to enter diapause successfully) for 20 
successive generations, the gypsy moth was presumed to have the potential of 
establishing there. This analysis is mathematically identical to the G-function 
developed by Logan & Powell (200 1 ). 

The same approach was used to produce a map of the probability of 
establishment of gypsy moth throughout the North American continent north 
of Mexico. A series of 27,360 simulation points was located randomly across 
the continent. Twenty-generation model runs were made for each point using 
daily weather data generated from local normals (using the GIDS local 
gradient method described earlier). For each model run, the outcome was 
rated as 0 (seasonality did not remain viable for 20 generations) or 1 
(seasonality did remain viable). Each run was replicated 30 times (30 
stochastically different daily weather traces), and the average outcome for 
each point was used as an estimate of the probability of gypsy moth 
establishment at that location: 

1 n 

P; =-(1+ LPu) 
n+ 2 ,=1 

[4] 

where P!J is the simulation outcome for point i and replicate}, n = 30 is the 
number of replicates and 0.02:::;; P1 :::;; 0.98. The resulting probability table was 
transformed to a logit scale for linearization: 

g(P) = ln[(P)/(1 P)] [5] 

and was then interpolated spatially by universal kriging using elevation as a 
drift variable, over a digital elevation model of North America at 30 arc 
second (~1 km) resolution. The resulting map was back transformed to a 
probability scale by inverting equation [5] (Plate X2). 
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The Mountain Pine Beetle 

The mountain pine beetle, Dendrochtonus ponderosae Hopkins, is a 
bark beetle (Coleoptera: Scolytidae) that has a large impact on ponderosa and 
lodgepole pine forests throughout western North America all the way from 
northern Mexico to central British Columbia (Logan & Powell 200 I). There 
are two critical factors determining the ability of mountain pine beetle to 
overcome the defenses of its host tree to kill it and successfully reproduce: 
adequate seasonal timing and simultaneous attack by large numbers of 
beetles. 

Thus, an adaptive seasonality for this insect implies that critical 
events in its life cycle be timed adequately, and that the development of the 
population not be so spread-out (variable) that large numbers of adults are not 
available for synchronous attack within a given summer. In most insects, 
winter diapause serves to halt development during the cold season and 
maintain the population in the early stages of post-diapause until temperature 
warms up in the spring, a process that resets the biological calendar and 
synchronizes the entire population. In the mountain pine beetle, however, 
there is no evidence of diapause in any life stage. In this species, seasonality 
seems entirely determined by the seasonal patterns of weather (Logan & 
Bentz 1999). Direct control of the insect's seasonality by weather patterns is 
intriguing ecologically and evolutionarily. It would seem that very complex 
spatial and temporal patterns of abundance could result from the detail of 
regional, even local annual temperature fluctuations. 

A detailed phenology model is an ideal tool to address this type of 
question. Such a model is available for mountain pine beetle (Bentz et al. 
1991; citations in Logan & Powell 200 I). It is a distributed, non-linear 
description of the thermal responses of all stages of the insect's life cycle. 
Logan & Bentz (1999), Powell et al. (2000) and Logan & Powell (200 I) 
studied the model's behavior and provided insight as to how temperature 
regimes alone could synchronize an insect population without recourse to 
diapause. There are three basic conditions for the seasonality of mountain 
pine beetle to be adaptive under a given annual temperature regime (as 
depicted by this phenology model): it must be univoltine, oviposition dates 
from generation to generation must converge to a near-constant time of year 
and this date must fall between biologically realistic bounds (early July to late 
August). 

We generated maps depicting the likelihood of mountain pine beetle 
establishment and thriving, on the basis of the probability of it achieving 
adaptive seasonality as defined by the three criteria above. We applied climate 
change scenarios, defined by deviations in monthly mean minimum and 
maximum air temperature, to normals used by BioSIM0

. These scenarios 
were obtained from the Canadian Centre for Climate Modeling and Analysis 
(http://www.cccma.bc.ec.gc.ca/), gridded at finer spatial resolution 
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(http://www .cics.uvic.ca/ scenarioslindex.cgi?Scenarios). Climate-changed 
normals (30-year averages) were calculated at 10 year intervals from the 
period 1971-2000 to 2041-2070. Actual normals were used for the 4 decades 
1931-1960, 1941~1970, 1951~1980 and 1961~1990. Simulations (20 
successive generations) were run for 500 randomly~located points in British 
Columbia and Alberta (Fig. 3), and each simulation was replicated 30 times 
for each set of normals. The logistic transformation (equations [4] and [5]) 
was used prior to applying universal kriging (with elevation as drift variable) 
to the resulting probability of adaptive seasonality, and the resulting maps 
were back-transformed to a regular probability (inverting equation [5]). 

The resulting series of probability maps covers a 120~year time span 
(Plate X3). The model predicts a gradual northward shift of the insect's most 
suitable range in British Columbia and Alberta. It also predicts a gradual 
restriction towards higher elevations as the climate of the region warms, 
disrupting the univoltinism requirement for adaptive seasonality in mountain 
pine beetle. 

Currently, mountain pine beetle thrives in south and central British 
Columbia, and in the Cypress Hills are of southeastern Alberta. It is confined 
there by prairies and the high elevations of the Canadian Rocky Mountains. 
The northern part of Alberta is forested by jack pine, Pinus banksiana, a 
species that is only now coming in contact with mountain pine beetle in the 
mountain passes between central BC and Alberta (Logan & Powell 2001; 
personnal communication, A. Carroll, Canadian Forest Service, Victoria, BC). 
However, it seems quite likely that the mountain pine beetle can spill over the 
natural barrier of the high mountains, given the increasing suitability of 
northern latitude and higher elevations as global warming proceeds. 

CONCLUSIONS 

The development of phenology modeling methodologies in the field 
of animal ecology has tended to precede somewhat that of computing 
technology in the past 30 years, since the introduction of nonlinear and 
distributed models of poikilotherm thermal responses. These models are 
becoming increasingly sophisticated, detailed and accurate, and the study of 
their behavior is teaching us about the evolution of seasonality and the effects 
of temperature on the distribution and population stability of poikilotherms. It 
is also becoming increasingly feasible to investigate the outcomes of 
phenological processes through models that make predictions over large, 
climatically and topographically complex areas. 

These technologies allow us to use landscape~wide phenological 
projections in the conduct of area-wide Integrated Pest Management 
activities. They also provide us with the ability to study and better understand 
the ecology and distribution of indigenous species based on comparison of 
observations with model predictions. We can also use these tools to analyze 
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the probable reactions of these indigenous species to changing environments, 
most importantly climate change but also changes in the distribution of host 
plants resulting from human activity. Finally, these tools can be used to 
predict the probable distribution and thriving of invasive species, such as 
gypsy moth, as soon as we gain sufficiently detailed knowledge of their 
thermal responses. 

Using Geographical Information Systems technology, it is also 
becoming relatively simple to merge tlie outcome of our detailed 
understanding of developmental processes with other, geographically critical 
information such as the distribution of susceptible plants, soils, water, as well 
as insect or disease survey data. This convergence of information constitutes 
the basis for investigation of more complex ecological issues that are always 
related to seasonality and phenology, but not always directly or simply. 
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Plate X1• (A) Digital elevation model of a region of Quebec, Canada, between 46"N, 
70"W and 48°N, 73"W). (B) Phenology of spruce budworm (average instar in 
populations) on 1 June, based on 1961-1990 temperature normals. (C) Defoliation(%) 
expected after a double application of high-potency B.t. (60 BIU per ha) on I and 8 June. 
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Plate Xz. Probability of gypsy moth establishment in North America (north of Mexico) based on its ability to achieve an adaptive seasonality. 



Plate X3• Series of maps depicting the probability of Mountain pine 
beetle achieving an adaptive seasonality in British Columbia and Alberta, 
Canada, on the basis of daily temperature inputs generated from 30-year 
normals at 10-year intervals from 1931-1960 to 2041-2070 


